Design 2

Lesson Objectives

When you finish this lesson you will understand:

- Joint Design Terminology
- Prequalified Joint Selection
- Statically & Dynamically loaded Joints

Learning Activities

- 1. Read Handbook pp 149-158
- 2. View Slides;
- 3. Read Notes,
- 4. Listen to lecture
- 5. Do on-line workbook

6. Do homework

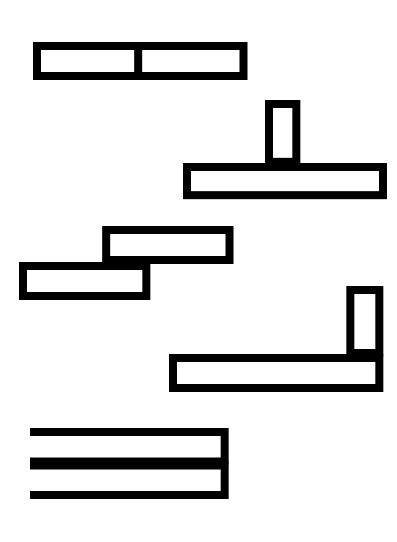
Keywords 🥤

Joint Design, Butt Joint, T Joint, Lap Joint, Corner Joint, Edge Joint, Square Weld, Fillet Weld, Bevel Groove, V Groove, J Groove, U Groove, Groove Angle, Bevel Angle, Root, Root Face, Land, Root Opening, Throat, Leg Length, Weld Face, Weld Toe, Flat, Horizontal, Vertical, Overhead, Tension, Compression, Bending, Torsion, Shear

Welding Design

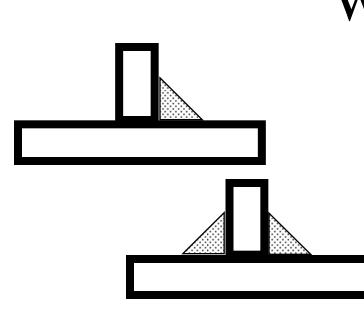
- Welding design involves consideration of strength requirements, cost, and service conditions
 - Mechanical & Physical properties
- → Joint Design
 - Welding stress and distortion

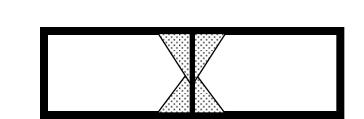
Welding Design


- Types of joints and welds
- Joint selection AWS D1.1
- Fatigue design
- Residual stress and distortion

Joint Types

Joint Design

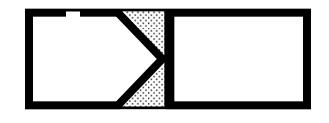

- Continuity of section
- T joint
 - Flanges or stiffeners
- Lap joint
 - No joint preparation
- Corner joint
- Edge joint
 - Two or more parallel, or nearly parallel members



Joint Design

Weld Types

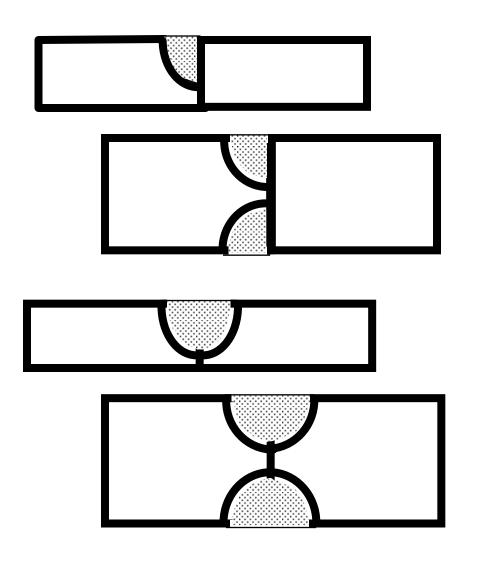
- Fillet weld
 - Approximately triangular
 - No joint preparation required
 - Most common weld in structural work
- Square Weld
 - Penetration difficult with single; double used to ensure strength
 - Sometimes root is opened and a backing bar is used

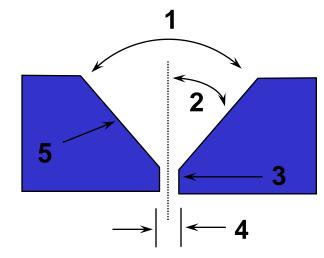



Joint Design

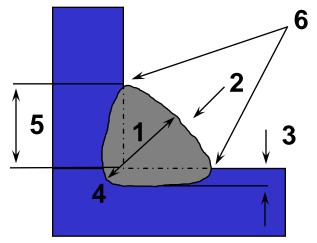
Weld Types

- Bevel groove
 - Single bevel is widely used
 - Double preferred if metal thickness
 >3/4
- V-groove
 - Both members beveled
 - Butt joints for plate thickness greater than 1/4 inch
- Double welds reduce distortion and require 1/2 the weld metal for a given plate thickness

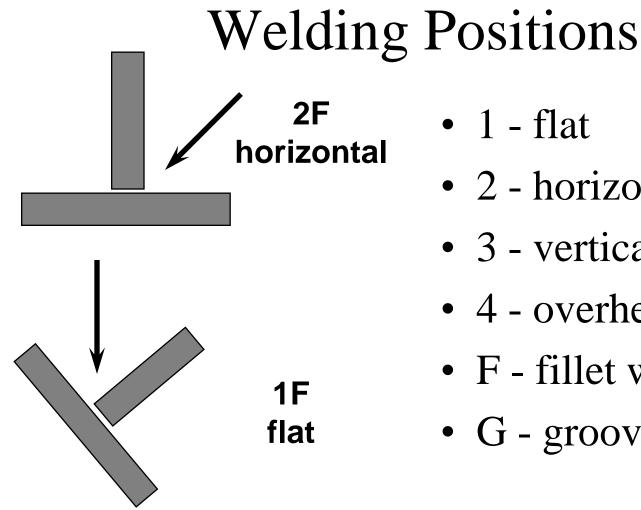



Joint Design

Weld Types

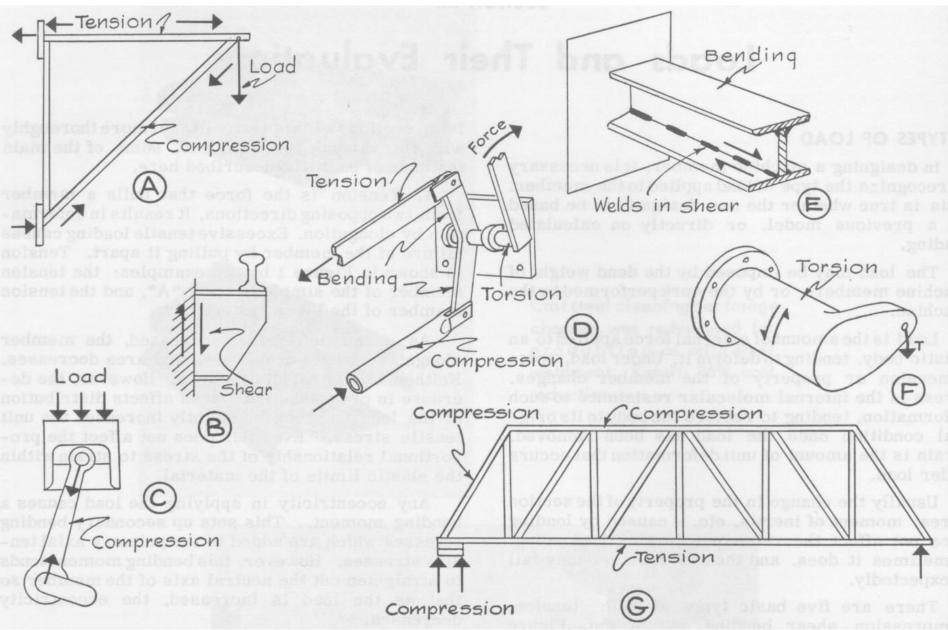


- J-groove
 - Single well suited for butted corner and T joints
 - Machined or carbon arc gouged preparation
- U-groove
 - Rounded base allows larger electrodes for narrower groove angles
 - Machined or carbon arc gouged preparation


Parts of a Weld Joint

- 1 groove angle
- 2 bevel angle
- 3 root face (land)
- 4 root opening (root gap)
- 5 groove face

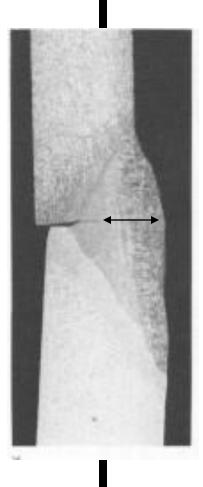
- 1 throat
- 2 weld face
- 3 depth of fusion
- 4 root
- 5 fillet leg length
- 6 weld toe



- 1 flat
- 2 horizontal
- 3 vertical
- 4 overhead
- F fillet weld
- G groove weld

Turn to the person sitting next to you and discuss (1 min.):
Do a calculation to prove that a double V groove requires ¹/₂ the weld metal than a single V groove with the same groove angel on the same thickness plate.

Loading of Joints


Blodgett "Design of Weldments" James F. Lincoln Arc Welding Floundation, 1976

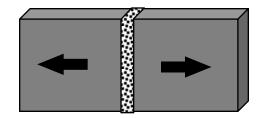
AWS D1.1 Structural Welding^{Code} Code - Steel

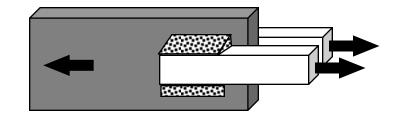
- Guidelines for design of welded joints, prequalified joint geometries
 - Statically loaded structures
 - Dynamically loaded structures
 - Tubular sections
- Details the processes used with particular joints
- How to qualify welding procedures and personnel
- Outlines quality and inspection in welded construction

AWS D1.1 Prequalified Joint Geometry

	groove weld (3)						For	B-U3c-S onl	ly
Butt joint (I	ь)		BACKGOUGE				T ₁		S,
				/ /	1 1.	NORGOUGE	Over	to	
		۲					2	2-1/2	1-3/B
							2-1/2	3	1-3/4
							3	3-5/8	2-1/8
							3-5/8	4	2-3/8
		ſ	1 A	1 1			4	4-3/4	2-3/4
				T.T	•		4-3/4	5-1/2	3-1/4
		/	+ R +	LS2			5-1/2	6-1/4	3-3/4
		~	- B-	~				> 6-1/4 or T ₁ 2/3 (T ₁ - 1/4	
							-10	ela (11 - 14	4)
		Baco Motal Tr	hicknoos	G	oove Preparatio	xn	01-	20 (11 - 17	4)
		Base Metal Tr (U = unlin				ances			4)
	Joint Designation			Gi Root Opening Root Face Groove Angle			Permitted Welding Positions	Gas Shielding for FCAW	Notes
	The second s	(U = unlin T ₁	T ₂	Root Opening Root Face Groove Angle R = 0 to 1/8	Tolera As Detailed (see 3.13.1) +1/16, -0	As Fit-Up (see 3.13.1) +1/16, -1/8	Permitted Welding	Gas Shielding	
Process	Designation	(U = unlin	nited)	Root Opening Root Face Groove Angle	Tolen As Detailed (see 3.13.1)	As Fit-Up (see 3.13.1)	Permitted Welding Positions	Gas Shielding	Notes C, D,
GMAW	Designation B-U3b	(U = unlin T ₁	T ₂	Root Opening Root Face Groove Angle R = 0 to 1/8 f = 0 to 1/8	Tolera As Detailed (see 3.13.1) +1/16, -0 +1/16, -0	As Fit-Up (see 3.13.1) +1/16, -1/8 Not limited	Permitted Welding Positions All	Gas Shielding for FCAW — Not	Notes C, D, M, N A, C,

$\sigma = \frac{P}{A}$

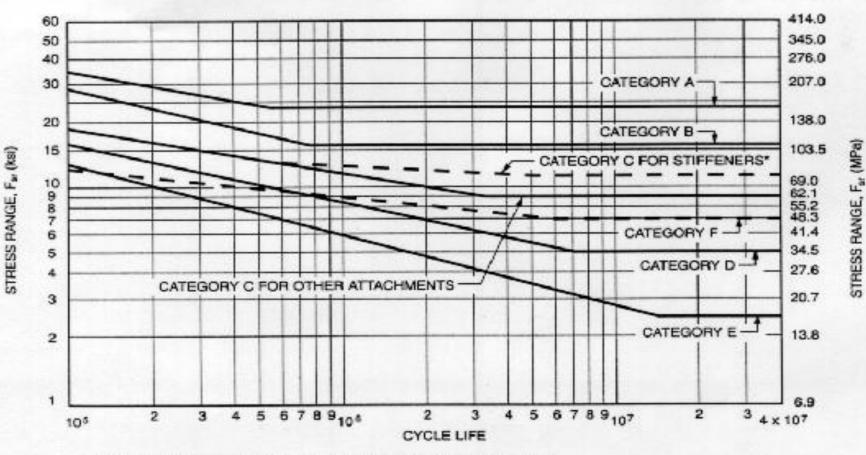



Turn to the person sitting next to you and discuss (1 min.):
We have already seen that some materials suffer mechanical property loss in the heat affected zone. How is this taken into account in the prequified procedures?

AWS D1.1 Structural Welding^{Code} Code - Steel

- Guidelines for design of welded joints, prequalified joint geometries
 - Statically loaded structures
 - Dynamically loaded structures
 - Tubular sections
- Details the processes used with particular joints
- How to qualify welding procedures and personnel
- Outlines quality and inspection in welded construction

AWS D1.1 Fatigue Design



Class B

Class F - weld metal Class E - base metal at ends of weld

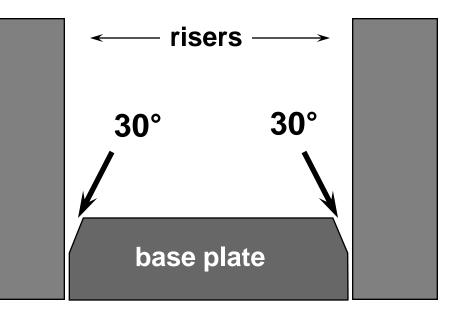
• AWS D1.1 provides fatigue design guidelines for different weld types and loading configurations

AWS D1.1 Fatigue Design Lines

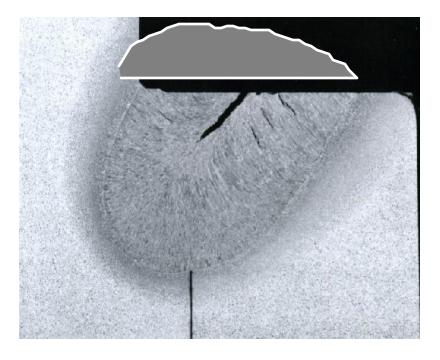
*TRANSVERSE STIFFENER WELDS ON GIRDER WEBS OR FLANGES

Figure 2.10—Design Stress Range Curves for Categories A to F— Nonredundant Structures (Nontubular) (see 2.24)

Turn to the person sitting next to you and discuss (1 min.):
The previous slide showed some fatigue design curves for a non-redundant structure design, that is if this part fails the structure fails. What might the chart look like for a part that is a redundant part?


Case Study: Solidification Cracking

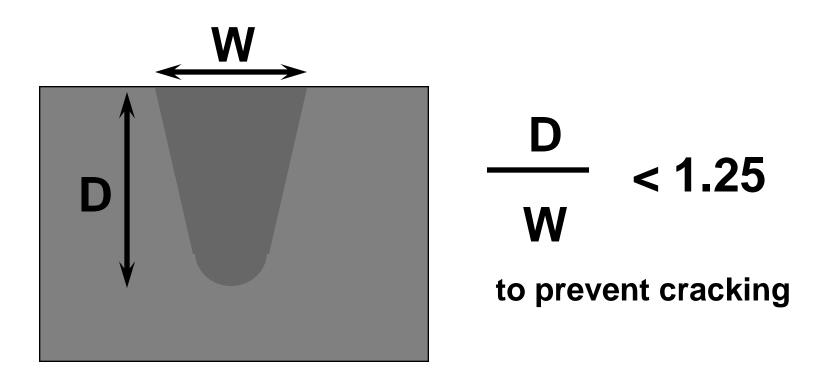
- Weld metal shrinks as it solidifies
 - Shrinkage causes stress
- Stress on hot weld metal
 - Metals have lower strength at high temperatures
- Weld metal cracks
- Affected by
 - Joint geometry
 - Impurity elements (S, P)


"Cocktail Napkin" Welding Case Study Procedure

- Submerged arc welding
- Corner joint, 30° bevel angle
- 1025 steel
- Saw-cut parts
- 900-1000 amps
- 35-36 volts
- 20-22 inches/minute

"The Weld Looked Great!"

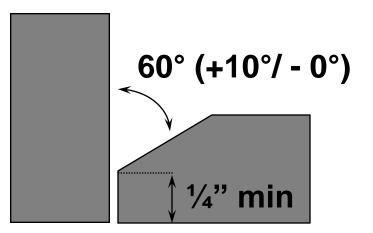
Weld cap before machining


- Internal crack wasn't visible after welding
- Weld cap removed during final machining
- Crack "appeared"

"The Welding Supplier Said" Change the Wire/Flux"

- Weld metal strength is increased by adding more manganese
 - Select a wire/flux combination that adds manganese to the weld metal
 - Stronger weld metal is less susceptible to cracking
- Manganese scavenges out excess sulfur
 - Sulfur in steel can exacerbate solidification cracking

"Let's Look It Up in the Handbook"


• Solidification cracking in submerged arc welds occurs when the depth-to-width ratio exceeds 1.25

Case Study

"Check With AWS D1.1"

- Joint angle 60°-70°
- Extra width reduces D/W ratio to below 1.25
- Cracking disappears
- To consider:
 - More weld metal to deposit leads to lower productivity
 - Could weld in 2 passes at high speed; good depth/width ratio on each pass

Welding Economics

- Amount of weld metal
 - Cost of weld metal
 - Time required to deposit
- Joint preparation
 - Grooves are prepared by machining, grinding, gas cutting, gouging
- Accessibility
 - Poor access to joint adds to weld time